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The presence of K+ ions in living cells is believed to be crucial
for the stability of G-quadruplex structures found in telomeric DNA
and other G-rich sequences.1-5 Recent crystallographic studies have
yielded reliable information about the K+ ion coordination geometry
in G-quadruplexes,6-9 confirming an earlier proposal that the K+

ion is sandwiched between two G-quartets.10 Because of the critical
role that monovalent cations play in G-quadruplex formation,
considerable efforts have also been devoted to the development of
other spectroscopic techniques for detecting cation binding in
G-quadruplexes. Successful NMR applications have been demon-
strated to use23Na (spin3/2), 15N (spin 1/2), and205Tl (spin 1/2) as
NMR probes to directly study Na+, NH4

+, and Tl+ ions in
G-quadruplexes.11-16 Smirnov et al. recently showed that extended
X-ray absorption fine structure (EXAFS) can be used to characterize
the Pb2+ binding site in G-quadruplexes.17 In general, the rather
weak association between K+ ions and biological structures renders
solution39K (spin3/2) NMR spectroscopy to be of limited utility.10,18

Furthermore,39K is one of the low-γ quadrupolar nuclides that are
extremely difficult to study by NMR at low magnetic fields. Only
a few solid-state39K NMR studies have been reported, and most
of those focus on simple inorganic K+ salts.19 Until now, crystal-
lography has been the only biophysical technique capable of directly
localizing K+ ions bound to biological structures. Here we report
the first solid-state39K NMR detection of K+ ions bound to the
G-quadruplex structures formed by 5′-tert-butyl-dimethylsilyl-2′,3′-
O-isopropylidene guanosine (G1), guanosine (G2), and guanosine
5′-monophosphate (G3) (Scheme 1).20 Our strategy for overcoming
practical difficulties in studying39K is to utilize an ultrahigh
magnetic field, 19.6 T (830 MHz for1H), at the National High
Magnetic Field Laboratory (NHMFL).

The lipophilic nucleoside G1 was used as the standard sample
for our 39K NMR experiment because G1 self-associates in the
presence of K+ and Cs+ picrate to form a crystallographically
defined G-quadruplex.7 As shown in Figure 1, the G-quadruplex
formed from G1 consists of four G-quartets that are stacked on
top of one another to give a structure with a central ion channel.
This channel is fully occupied by three collinear K+ ions along its
central axis. Each of the K+ ions is sandwiched by two G-quartets,
a structural feature remarkably similar to that recently found in
G-rich oligonucleotides.8,9 As shown in Figure 2, the39K magic-
angle spinning (MAS) spectrum of G1 exhibits a peak centered at
-45 ppm. The detailed features in the line shape suggest an overlap
of several central-transition powder spectra. Because there are three
crystallographically distinct, yet similar, K+ sites inside the G1
quadruplex channel, it is not possible to extract an accurate value

for the 39K nuclear quadrupole coupling constant (CQ) for each of
the K+ sites. On the basis of the39K spectra obtained at 19.6 and
11.7 T, we obtained the following estimates:δ ) -42 ppm and
CQ < 0.7 MHz. G2 forms a viscous gel in water in the presence of
KCl, indicating formation of a highly ordered molecular assembly.
An earlier X-ray fiber diffraction study confirmed that the G2
aggregates have a quadruplex structure.21 The 39K MAS spectrum
of G2 exhibits a peak withδ ) -45 ppm andCQ ≈ 0.7-0.8 MHz.
An additional sharp peak at-9 ppm arises from a small excess of
KCl. These observations suggest that, in the self-aggregates of G2,
the K+ ions reside exclusively inside the quadruplex channel in a
fashion similar to those in the G1 quadruplex. G3 is among the
earliest examples examined by Gellert et al., who first proposed
the G-quartet model.22 Subsequent X-ray diffraction studies con-
firmed that the self-assembly of G3 forms a right-handed quadruplex
helix.23 In contrast to nucleosides G1 and G2, G3 is a mononucle-
otide where the negatively charged phosphate group is another
potential K+ binding site. Consequently, in addition to the large
KCl signals (-9 ppm and associated spinning sidebands) and the
signal attributable to the channel K+ ions, the39K MAS spectrum
of G3 shows another peak with a line width 3 times greater than
that of the signal from the channel K+ ions. This broad signal (δ
≈ -60 ppm) can be assigned to the K+ ions bound to the phosphate
group. The ratio between the signal areas for the phosphate-bound
and channel K+ ions is approximately 3:2, much smaller than the
8:1 ratio expected for a G3 quadruplex saturated with K+ ions.
Our previous study showed that the G-quadruplex channel strongly
favors K+ ions, whereas the doubly charged phosphate group of
G3 prefers Na+ ions over K+ ions.13 As the G-quadruplex sample
containing G3 was prepared in the presence of both K+ and Na+
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Figure 1. Diagram illustrating the cation binding environment in the
G-quadruplex structure formed by G1 self-association.7
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ions,20 the central channel is clearly filled with K+ ions; however,
there are likely to be a considerable amount of Na+ ions that remain
bound to the phosphate groups. To further confirm this spectral
assignment, we obtained39K MAS spectra for hydrated K salts of
adenosine 2′-monophosphate and adenosine 5′-diphosphate, K(2′-
AMP)‚1.5H2O and K(5′-ADP)‚2H2O. The K+ ion in K(2′-AMP)
is coordinated to two phosphate oxygens, two water molecules, and
two hydroxyl groups from the ribose.24 The39K spectrum of K(2′-
AMP) exhibits a broad peak withδ ) -55 ppm andCQ ) 1.85
MHz, in excellent agreement with that observed for the phosphate-
bound K+ ions in G3. The K+ ion in K(5′-ADP) is coordinated to
seven neighbors: four phosphate oxygens, one water, one hydroxyl,
and an N atom from the adenine base.25 The 39K MAS spectrum
of K(5′-ADP) exhibits a clear second-order quadrupole line shape,
with δ ) -105 ppm andCQ ) 2.05 MHz. These parameters are
quite different from those observed for the K+ ions in G-
quadruplexes, reflecting the unusual K+ coordination in K(5′-ADP).

In summary, we have obtained unambiguous39K NMR signatures
for the K+ ions bound to G-quadruplex structures. This is an
important first step toward solid-state39K NMR studies of telomeric
DNA. The rich spectral information in the39K NMR spectra of
K-nucleotide systems suggests that solid-state NMR is a viable new
method for detecting K+ ions in biomolecular systems.
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Figure 2. Experimental39K MAS NMR spectra at 19.6 T. All solid-state
NMR experiments were performed with a narrow-bore magnet (31 mm)
and a Bruker Avance console at NHMFL operating at 38.72 MHz for39K
nuclei. A home-built MAS probe equipped with a 4-mm stator was used.
Reported39K chemical shifts were referenced to KBr(s),δ ) 0 ppm. Other
experimental details: G1, 10-kHz spinning, 7500 transients, 2-s recycle
delay; G2, 10-kHz spinning, 12 864 transients, 0.5-s recycle delay; G3,
8-kHz spinning, 100 000 transients, 1-s recycle delay; K(2′-AMP), 8-kHz
spinning, 34 956 transients, 2-s recycle delay; K(5′-ADP), 8-kHz spinning,
45 364 transients, 2-s recycle delay.
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